A data warehouse is a repository (collection of resources that can be accessed to retrieve information) of an organization's electronically stored data, designed to facilitate reporting and analysis [1].
This definition of the data warehouse focuses on data storage. The main source of the data is cleaned, transformed and cataloged and is made available to be used by managers and other business professional for data mining, online analytical processing, market research and decision support (Marakas & OBrien 2009). However, the means to retrieve and analyze data, to extract, transform and load data, and to manage the data dictionary are also considered essential components of a data warehousing system. Many references to data warehousing use this broader context. Thus, an expanded definition for data warehousing includes business intelligence tools, tools to extract, transform and load data into the repository, and tools to manage and retrieve metadata.
Data warehousing arises in an organization's need for reliable, consolidated, unique and integrated analysis and reporting of its data, at different levels of aggregation.
The practical reality of most organizations is that their data infrastructure is made up by a collection of heterogeneous systems. For example, an organization might have one system that handles customer-relationship, a system that handles employees, systems that handle sales data or production data, yet another system for finance and budgeting data, etc. In practice, these systems are often poorly or not at all integrated and simple questions like: "How much time did sales person A spend on customer C, how much did we sell to Customer C, was customer C happy with the provided service, Did Customer C pay his bills" can be very hard to answer, even though the information is available "somewhere" in the different data systems.
Another problem is that enterprise resource planning (ERP) systems are designed to support relevant operations. For example, a finance system might keep track of every single stamp bought; When it was ordered, when it was delivered, when it was paid and the system might offer accounting principles (like double bookkeeping) that further complicates the data model. Such information is great for the person in charge of buying "stamps" or the accountant trying to sort out an irregularity, but the CEO is definitely not interested in such detailed information, the CEO wants to know stuff like "What's the cost?", "What's the revenue?", "did our latest initiative reduce costs?" and wants to have this information at an aggregated level.
Yet another problem might be that the organization is, internally, in disagreement about which data are correct. For example, the sales department might have one view of its costs, while the finance department has another view of that cost. In such cases the organization can spend unlimited time discussing who's got the correct view of the data.
It is partly the purpose of data warehousing to bridge such problems. It is important to note that in data warehousing the source data systems are considered as given: Even though the data source system might have been made in such a manner that it's difficult to extract integrated information, the "data warehousing answer" is not to redesign the data source systems but rather to make the data appear consistent, integrated and consolidated despite the problems in the underlying source systems. Data warehousing achieves this by employing different data warehousing techniques, creating one or more new data repositories (i.e. the data warehouse) whose data model(s) support the needed reporting and analysis.
The concept of data warehousing dates back to the late 1980s [2] when IBM researchers Barry Devlin and Paul Murphy developed the "business data warehouse". In essence, the data warehousing concept was intended to provide an architectural model for the flow of data from operational systems to decision support environments. The concept attempted to address the various problems associated with this flow, mainly the high costs associated with it. In the absence of a data warehousing architecture, an enormous amount of redundancy was required to support multiple decision support environments. In larger corporations it was typical for multiple decision support environments to operate independently. Each environment served different users but often required much of the same stored data. The process of gathering, cleaning and integrating data from various sources, usually from long-term existing operational systems (usually referred to as legacy systems), was typically in part replicated for each environment. Moreover, the operational systems were frequently reexamined as new decision support requirements emerged. Often new requirements necessitated gathering, cleaning and integrating new data from "data marts" that were tailored for ready access by users.
Key developments in early years of data warehousing were:
Architecture, in the context of an organization's data warehousing efforts, is a conceptualization of how the data warehouse is built. There is no right or wrong architecture, but rather there are multiple architectures that exist to support various environments and situations. The worthiness of the architecture can be judged from how the conceptualization aids in the building, maintenance, and usage of the data warehouse.
One possible simple conceptualization of a data warehouse architecture consists of the following interconnected layers:
There are two leading approaches to storing data in a data warehouse — the dimensional approach and the normalized approach.
In a dimensional approach, transaction data are partitioned into either "facts", which are generally numeric transaction data, or "dimensions", which are the reference information that gives context to the facts. For example, a sales transaction can be broken up into facts such as the number of products ordered and the price paid for the products, and into dimensions such as order date, customer name, product number, order ship-to and bill-to locations, and salesperson responsible for receiving the order. A key advantage of a dimensional approach is that the data warehouse is easier for the user to understand and to use. Also, the retrieval of data from the data warehouse tends to operate very quickly. The main disadvantages of the dimensional approach are:
In the normalized approach, the data in the data warehouse are stored following, to a degree, database normalization rules. Tables are grouped together by subject areas that reflect general data categories (e.g., data on customers, products, finance, etc.). The main advantage of this approach is that it is straightforward to add information into the database. A disadvantage of this approach is that, because of the number of tables involved, it can be difficult for users both to:
These approaches are not mutually exclusive, and there are other approaches. Dimensional approaches can involve normalizing data to a degree.
Another important fact in designing a data warehouse is which data to conform and how to conform the data. For example, one operational system feeding data into the data warehouse may use "M" and "F" to denote sex of an employee while another operational system may use "Male" and "Female". Though this is a simple example, much of the work in implementing a data warehouse is devoted to making similar meaning data consistent when they are stored in the data warehouse. Typically, extract, transform, load tools are used in this work.
Master Data Management has the aim of conforming data that could be considered "dimensions".
Ralph Kimball, a well-known author on data warehousing,[4] is a proponent of an approach to data warehouse design which he describes as bottom-up.[5].
In the bottom-up approach data marts are first created to provide reporting and analytical capabilities for specific business processes. Though it is important to note that in Kimball methodology, the bottom-up process is the result of an initial business oriented Top-down analysis of the relevant business processes to be modelled.
Data marts contain, primarily, dimensions and facts. Facts can contain either atomic data and, if necessary, summarized data. The single data mart often models a specific business area such as "Sales" or "Production." These data marts can eventually be integrated to create a comprehensive data warehouse. The integration of data marts is managed through the implementation of what Kimball calls "a data warehouse bus architecture".[6]. The data warehouse bus architecture is primarily an implementation of "the bus" a collection of conformed dimensions, which are dimensions that are shared (in a specific way) between facts in two or more data marts.
The integration of the data marts in the data warehouse is centered on the conformed dimensions (residing in "the bus") that define the possible integration "points" between data marts. The actual integration of two or more data marts is then done by a process known as "Drill across". A drill-across works by grouping (summarizing) the data along the keys of the (shared) conformed dimensions of each fact participating in the "drill across" followed by a join on the keys of these grouped (summarized) facts.
Maintaining tight management over the data warehouse bus architecture is fundamental to maintaining the integrity of the data warehouse. The most important management task is making sure dimensions among data marts are consistent. In Kimball's words, this means that the dimensions "conform".
Some consider it an advantage of the Kimball method, that the data warehouse ends up being "segmented" into a number of logically self contained (up to and including The Bus) and consistent data marts, rather than a big and often complex centralized model. Business value can be returned as quickly as the first data marts can be created, and the method gives it self well to an exploratory and iterative approach to building data warehouses. For example, the data warehousing effort might start in the "Sales" department, by building a Sales-data mart. Upon completion of the Sales-data mart, The business might then decide to expand the warehousing activities into the, say, "Production department" resulting in a Production data mart. The requirement for the Sales data mart and the Production data mart to be integrable, is that they share the same "Bus", that will be, that the data warehousing team has made the effort to identify and implement the conformed dimensions in the bus, and that the individual data marts links that information from the bus. Note that this does not require 100% awareness from the onset of the data warehousing effort, no master plan is required upfront. The Sales-data mart is good as it is (assuming that the bus is complete) and the production data mart can be constructed virtually independent of the sales data mart (but not independent of the Bus).
If integration via the bus is achieved, the data warehouse, through its two data marts, will not only be able to deliver the specific information that the individual data marts are designed to do, in this example either "Sales" or "Production" information, but can deliver integrated Sales-Production information, which, often, is of critical business value. An integration (possibly) achieved in a flexible and iterative fashion.
Bill Inmon, one of the first authors on the subject of data warehousing, has defined a data warehouse as a centralized repository for the entire enterprise.[6] Inmon is one of the leading proponents of the top-down approach to data warehouse design, in which the data warehouse is designed using a normalized enterprise data model. "Atomic" data, that is, data at the lowest level of detail, are stored in the data warehouse. Dimensional data marts containing data needed for specific business processes or specific departments are created from the data warehouse. In the Inmon vision the data warehouse is at the center of the "Corporate Information Factory" (CIF), which provides a logical framework for delivering business intelligence (BI) and business management capabilities.
Inmon states that the data warehouse is:
The top-down design methodology generates highly consistent dimensional views of data across data marts since all data marts are loaded from the centralized repository. Top-down design has also proven to be robust against business changes. Generating new dimensional data marts against the data stored in the data warehouse is a relatively simple task. The main disadvantage to the top-down methodology is that it represents a very large project with a very broad scope. The up-front cost for implementing a data warehouse using the top-down methodology is significant, and the duration of time from the start of project to the point that end users experience initial benefits can be substantial. In addition, the top-down methodology can be inflexible and unresponsive to changing departmental needs during the implementation phases.[6]
Over time it has become apparent to proponents of bottom-up and top-down data warehouse design that both methodologies have benefits and risks. Hybrid methodologies have evolved to take advantage of the fast turn-around time of bottom-up design and the enterprise-wide data consistency of top-down design.
Operational systems are optimized for preservation of data integrity and speed of recording of business transactions through use of database normalization and an entity-relationship model. Operational system designers generally follow the Codd rules of database normalization in order to ensure data integrity. Codd defined five increasingly stringent rules of normalization. Fully normalized database designs (that is, those satisfying all five Codd rules) often result in information from a business transaction being stored in dozens to hundreds of tables. Relational databases are efficient at managing the relationships between these tables. The databases have very fast insert/update performance because only a small amount of data in those tables is affected each time a transaction is processed. Finally, in order to improve performance, older data are usually periodically purged from operational systems.
Data warehouses are optimized for speed of data analysis. Frequently data in data warehouses are denormalised via a dimension-based model. Also, to speed data retrieval, data warehouse data are often stored multiple times—in their most granular form and in summarized forms called aggregates. Data warehouse data are gathered from the operational systems and held in the data warehouse even after the data has been purged from the operational systems.
Organizations generally start off with relatively simple use of data warehousing. Over time, more sophisticated use of data warehousing evolves. The following general stages of use of the data warehouse can be distinguished:
Some of the benefits that a data warehouse provides are as follows:[7][8]
There are also disadvantages to using a data warehouse. Some of them are:
Some of the applications data warehousing can be used for are:
Data warehousing, like any technology , has a history of innovations that did not receive market acceptance.[10]
A 2009 Gartner Group paper predicted these developments in business intelligence/data warehousing market.[11]
|